Consider the 2-D velocity field $\vec{V}=u \hat{\imath}+v \hat{\jmath}$

$$
u=y \quad v=x
$$

whose hyperbolic-shape streamlines are sketched below. The density ρ is everywhere constant.
a) Evaluate the mass-flow integral

$$
I=\oint \rho(\vec{V} \cdot \hat{n}) d A
$$

for the square control volume of side length ℓ shown in the figure.
Hint: First express I as four separate integrals $I_{1}, I_{2}, I_{3}, I_{4}$ over each of the four segments of the C.V. boundary. Note that $d A$ is a length in 2-D.
b) Does this flow satisfy the mass conservation law everywhere? Explain.

